China Professional 13t 16t Inboard Semi Trailer Axle for Truck Parts cv axle puller

Product Description

1. On CZPT semi trailer axle Since 1999
2. 20 years experience on semi trailer axle and components
3. 1 year Quality warranty
4. ISO, TS16949 Certificate
5. 7×16 hours service
6. Customized ODM OEM semi trailer axle available 
7. 4 Global Offices

WONDEE Semi trailer Axle Information:
 
1. Axle type:  American type , Germany type , CZPT type 
2. Axle beam: Round beam , Suqare beam 150*150mm,127*127mm ,
3. Capacity: 11T~20T
4. Customized semi-trailer axles are available

WONDEE Semi Truck Lift Axle Detail Photos: 

WONDEE 16T Axle Dimensions :
 

Part No. Max. Capacity Distance of Chamber Track Axle Beam Brake size Length Bearing Weight
XDE12-1802 12000 420 1840 150 420×180 2156 33213/33118 372
XDE12-2002 12000 354 1840 150 420×200 2156 33213/33118 396
XDE14-2001 14000 354 1840 150 420×200 2188 33215/33119 416
XDE16-2001 16000 356 1850 150 420×200 2242 32314/32222 468
XDE16-2201 16000 376 1850 150 420×220 2242 32314/32222 474
XDE18-2202 18000 376 1850 150 420×220 2242 32314/32222 491

WONDEE Semi trailer Axle machining: 

WONDEE Heavy duty semi trailer axle Features :
 
1.Axle beam use 20Mn2 seamless pipe, through one-piece press forging and special heat-treatment, which has great over loading capacity and high intensity.
2. Axle  spindle,which was processed by digital controlled lathe, is made of alloy material. The bearing position is processed by the method of hardending operation,therefore the bearing can be fixed by hand instead of heating, also convenient for maintain and fixing.
3. Axle  spindle is connected by the by submerged arc welding, which make the whole beam more reliable and solid.
4.Axle bearing position is used the grinding machine to keep the bearing at the same level, after processing, it can assure that the concentricity within 0.02mm strictly. 
5. Axle grease lubricant is supplied by EXXON Mobile which could providehigh lubricating performance and protect bearing well.
6. Axle brake lining is high performance, non-asbestos, non-pollution and long service life. To make check and replace easily, also come with the position of the exhaustion to remind customer to check and maintain.
7.Axle bearing is adopted famous brand in China, with the advantages of over loading capability, High rotating speed, good intensity, abrade resistant and heat resistant.

WONDEE Semi trailer Axle Warehouse:

WONDEE axle factory Workshop :

 Besides Semi trailer Axle ,WONDEE also Supply:
 

Semi-trailers:       
Skeletal semi-trailers flatbed semi-trailers container semi-trailers low bed semi-trailers
van semi-trailers fuel tank semi-trailers logging semi-trailers Fence Semi trailers
Spare Parts:      
Leaf spring, flat bar, Chassis, H-beam
Air suspension, mechanic suspension, bogie Coupling,
Axle  air chamber, slack adjuster hitch. 
Brake drum brake shoe brake lining wheel hub
tubeless wheel rims, tube wheel rims, Aluminum wheel rim wheel bolt
u bolt center bolt hub bolt twist lock,
Turntable, 5th wheel,  landing gear, king pin,

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Condition: New
Axle Number: 1
Application: Trailer
Certification: ISO
Material: Steel

axle

What is the role of axles in electric vehicles, and how do they differ from traditional axles?

Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here’s a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:

Role of Axles in Electric Vehicles:

The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.

In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.

Differences from Traditional Axles:

While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:

1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an “electric axle” or “e-axle.” This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.

2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.

3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle’s kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.

4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.

5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.

It’s important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.

axle

Are there specific maintenance tips to extend the lifespan of my vehicle’s axles?

Maintaining the axles of your vehicle is crucial for ensuring their longevity, performance, and overall safety. Here are some specific maintenance tips to extend the lifespan of your vehicle’s axles:

  1. Regular Inspection:
  2. Perform regular visual inspections of the axles to check for any signs of damage, leaks, or excessive wear. Look for cracks, bends, or rust on the axle housing, and inspect the axle shafts, seals, and boots. Early detection of issues can help prevent further damage and costly repairs.

  3. Lubrication:
  4. Follow the manufacturer’s recommendations for axle lubrication. Proper lubrication helps reduce friction and wear on the axle components. Regularly check the axle’s lubricant level and quality, and replace it as necessary. Use the recommended lubricant type and viscosity for your specific axle.

  5. Seal Inspection and Replacement:
  6. Check the axle seals for any signs of leaks, such as fluid accumulation around the axle ends. Leaking seals can allow contaminants to enter the axle assembly, leading to premature wear and damage. Replace worn or damaged seals promptly to maintain proper lubrication and prevent contamination.

  7. Proper Loading and Towing:
  8. Ensure that you do not exceed the weight capacity of your vehicle’s axles. Overloading or towing beyond the recommended limits can put excessive stress on the axles, leading to premature wear or failure. Be mindful of the payload and towing capacity specified by the vehicle manufacturer.

  9. Driving Techniques:
  10. Adopt proper driving techniques to minimize stress on the axles. Avoid sudden acceleration, aggressive cornering, and harsh braking, as these actions can subject the axles to excessive forces. Additionally, be cautious when driving over rough terrain or obstacles to prevent impacts that could damage the axles.

  11. Regular Wheel Alignment:
  12. Maintain proper wheel alignment to prevent excessive strain on the axles. Misaligned wheels can put uneven loads on the axles, leading to accelerated wear. Regularly check and adjust the wheel alignment as per the manufacturer’s recommendations.

  13. Proper Tire Inflation:
  14. Ensure that your vehicle’s tires are properly inflated according to the recommended tire pressure. Underinflated or overinflated tires can affect the load distribution on the axles and increase the risk of axle damage. Regularly check and maintain the correct tire pressure.

  15. Service Intervals:
  16. Follow the recommended service intervals for your vehicle, which may include axle inspections, lubricant changes, and other maintenance tasks. Adhering to these intervals ensures that the axles are properly maintained and any potential issues are addressed in a timely manner.

It’s important to consult your vehicle’s owner’s manual for specific maintenance guidelines and intervals provided by the manufacturer. Additionally, if you notice any unusual noises, vibrations, or handling issues related to the axles, it is advisable to have your vehicle inspected by a qualified mechanic to identify and address any potential axle problems promptly.

axle

What are the factors to consider when choosing an axle for a custom-built vehicle?

Choosing the right axle for a custom-built vehicle is crucial for ensuring optimal performance, durability, and safety. Here are several key factors to consider when selecting an axle for a custom-built vehicle:

  1. Vehicle Type and Intended Use:
  2. Consider the type of vehicle you are building and its intended use. Factors such as vehicle weight, power output, terrain (on-road or off-road), towing capacity, and payload requirements will influence the axle selection. Off-road vehicles may require axles with higher strength and durability, while performance-oriented vehicles may benefit from axles that can handle increased power and torque.

  3. Axle Type:
  4. Choose the appropriate axle type based on your vehicle’s drivetrain configuration. Common axle types include solid axles (live axles) and independent axles. Solid axles are often used in heavy-duty applications and off-road vehicles due to their robustness and ability to handle high loads. Independent axles offer improved ride quality and handling characteristics but may have lower load-carrying capacities.

  5. Weight Capacity:
  6. Determine the required weight capacity of the axle based on the vehicle’s weight and intended payload. It’s crucial to select an axle that can handle the anticipated loads without exceeding its weight rating. Consider factors such as cargo, passengers, and accessories that may contribute to the overall weight.

  7. Axle Ratio:
  8. Choose an axle ratio that matches your vehicle’s powertrain and desired performance characteristics. The axle ratio affects the torque multiplication between the engine and wheels, influencing acceleration, towing capability, and fuel efficiency. Higher axle ratios provide more torque multiplication for improved low-end power but may sacrifice top-end speed.

  9. Braking System Compatibility:
  10. Ensure that the chosen axle is compatible with your vehicle’s braking system. Consider factors such as the axle’s mounting provisions for brake calipers, rotor size compatibility, and the need for an anti-lock braking system (ABS) if required.

  11. Suspension Compatibility:
  12. Consider the compatibility of the chosen axle with your vehicle’s suspension system. Factors such as axle mounting points, suspension geometry, and overall ride height should be taken into account. Ensure that the axle can be properly integrated with your chosen suspension components and that it provides sufficient ground clearance for your specific application.

  13. Aftermarket Support:
  14. Consider the availability of aftermarket support for the chosen axle. This includes access to replacement parts, upgrade options, and technical expertise. A robust aftermarket support network can be beneficial for future maintenance, repairs, and customization needs.

  15. Budget:
  16. Set a realistic budget for the axle selection, keeping in mind that high-performance or specialized axles may come at a higher cost. Balance your requirements with your budget to find the best axle option that meets your needs without exceeding your financial limitations.

When choosing an axle for a custom-built vehicle, it’s recommended to consult with knowledgeable professionals, experienced builders, or reputable axle manufacturers. They can provide valuable guidance, assist in understanding technical specifications, and help you select the most suitable axle for your specific custom vehicle project.

China Professional 13t 16t Inboard Semi Trailer Axle for Truck Parts   cv axle pullerChina Professional 13t 16t Inboard Semi Trailer Axle for Truck Parts   cv axle puller
editor by CX 2024-04-17