China OEM Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine with Hot selling

Product Description

Horizontal Automatic Energy Saving Servo Drive PET Plastic Preform Making Injection Blow Moulding Machine

Our automatic plastic perform injection molding machine adopts a thermal flow system and high-pressure injection molding to get high precision of bottle mouth, bottleneck and screw. It can inject all kinds of plastic parts such as bottle preform, engineering plastic, UPVC, PVC, PE pipes fitting, pomponents for automotive, household, eletronics,  telecommunication, etc.

Advantages of Our Plastic Preform Injection Molding Machine

1. Even the mainframe has no height limit for the workshop to be placed due to its low fuselage.

2. The product can be automatically dropped occasions, do not need to use a manipulator can also achieve automatic molding.

3. Because of the low fuselage, it is convenient for feeding and maintenance.

4. The mold shall be installed by crane.

5. The molding products are easy to be collected and packed by the conveyor belt when multiple sets are arranged in parallel.
Details of Our Plastic Preform Injection Molding Machine

Technical Parameters

Item PM-1300A PM-1600A PM-2000A
screw diameter (mm) 35 40 45 45 50 55 50 55 60
screw l/d ratio (l/d) 24 21 18.7 23.3 21 19.1 23.1 21 19
theoretical shot volume (mm³) 173 226 286 358 442 534 491 594 707
shot weight (ps) (g) 158 206 260 326 402 486 447 540 643
injection pressure (mpa) 235 142 142 219 178 147 215 178 149
theoretical injection rate (ps) (g/s) 110 181 181 142 175 212 145 175 208
plasticising capacity (g/s) 13.8 19.7 27.1 20.1 26.5 34.2 22.5 28.7 35.4
max screw rotate speed (r/min) 250 200 170
injection stroke (mm) 180 225 250
Max.Clamping force(kn) 1300 1600 2000
Max.Opening stroke (mm) 400 460 500
space between (mm) 420*420 480*480 505*505
mould height (mm) 160-440 180-500 190-530
Max.Daylight (mm) 840 960 1030
pump motor power (kw) 13 15 18.5
heating power (kw) 9.2 13.6 16.6
heating zone 4 4 4
net weight 4.3 5.6 6.4
oil tank capacity (t) 360 420 420
intenational designation (l) 1300-410 1600-785 2000-1060

Our Service
Customized service
We can design the machines according your requirements(material,power,filling type,the kinds of the bottles,and so on),at the same time we will give you our professional suggestion,as you know,we have been in this industry for many years.

After-sales service
1.We will delivery the machine and provide the bill of load on time to make sure you can get the machine quickly 
2.When you finish the Preparation conditions,our fast and professional aftersales service engineer team will go to your factory to install the machine,give you the operating manual,and train your employee until they can operate the machine well. 
3.We often ask feedback and offer help to our customer whose machine have been used in their factory for some time.
4.We provide 1 year warranty 
5.Well-trained & experienced staff are to answer all your inquiries in English and Chinese
6.24 hours for engineer response (all services part 5days in customer hand by Intl’ courier). 
7.12 Months guarantee and life-long technical support.
8.Your business relationship with us will be confidential to any third party. 
9.Good after-sale service offered, please get back to us if you got any questions.

Quality Control
We have separate quality control department, which make sure the raw materials are qualified,also ensure the machine running smoothly. 
If you want to know more information about the product,Send inquiry to us, we will solve any of your problems and send you running video for reference.

Packaging & Shipping

Company Information
HangZhou Proman Machine Co., Ltd. is a production manufacturer and exporter in China, specialized in water treatment plants,beverage filling machine, packing machine, bottle blowing machine, injection moulding machine and spare parts of filling line.

Our factory was established in the year of 1998, with the long history of accumulated experience in filling machine industry in south ZheJiang . There are many development engineers of filling machine in our company. We devote ourselves to the development, research and production of liquid food and beverage packing and filling industry.

Besides, we have our own designs for the bottles.

Proman Machine cooperated with many customers in recent years, we win the trust of customers from our high-quality products. And we are looking forward to the future cooperation with you if our products can impress you deeply!

FAQ

1. Where is your factory? 
Our Factory is located in HangZhou City, 2 hours drive from ZheJiang and 1 hour drive from HangZhou(airplane & high-speed rail). If you arrive at ZheJiang or HangZhou, we can pick you up to visit our factory.

2. Do you have any technical supports with your Plastic Preform Injection Molding Machines? 
Yes, We have a professional team of engineers who owned many installation, debug and training experiences abroad, are available to service machinery overseas. 

3. What’s your guarantee or the warranty of the quality if we buy your machines? 
We offer high quality machines with 1 year warranty and supply life-long technical support. 
You’re always welcome to visit our company. If you have any interest on our products. Please do not hesitate to contact us.

Worm Gear Motors

Worm gear motors are often preferred for quieter operation because of the smooth sliding motion of the worm shaft. Unlike gear motors with teeth, which may click as the worm turns, worm gear motors can be installed in a quiet area. In this article, we will talk about the CZPT whirling process and the various types of worms available. We’ll also discuss the benefits of worm gear motors and worm wheel.
worm shaft

worm gear

In the case of a worm gear, the axial pitch of the ring pinion of the corresponding revolving worm is equal to the circular pitch of the mating revolving pinion of the worm gear. A worm with 1 start is known as a worm with a lead. This leads to a smaller worm wheel. Worms can work in tight spaces because of their small profile.
Generally, a worm gear has high efficiency, but there are a few disadvantages. Worm gears are not recommended for high-heat applications because of their high level of rubbing. A full-fluid lubricant film and the low wear level of the gear reduce friction and wear. Worm gears also have a lower wear rate than a standard gear. The worm shaft and worm gear is also more efficient than a standard gear.
The worm gear shaft is cradled within a self-aligning bearing block that is attached to the gearbox casing. The eccentric housing has radial bearings on both ends, enabling it to engage with the worm gear wheel. The drive is transferred to the worm gear shaft through bevel gears 13A, 1 fixed at the ends of the worm gear shaft and the other in the center of the cross-shaft.

worm wheel

In a worm gearbox, the pinion or worm gear is centered between a geared cylinder and a worm shaft. The worm gear shaft is supported at either end by a radial thrust bearing. A gearbox’s cross-shaft is fixed to a suitable drive means and pivotally attached to the worm wheel. The input drive is transferred to the worm gear shaft 10 through bevel gears 13A, 1 of which is fixed to the end of the worm gear shaft and the other at the centre of the cross-shaft.
Worms and worm wheels are available in several materials. The worm wheel is made of bronze alloy, aluminum, or steel. Aluminum bronze worm wheels are a good choice for high-speed applications. Cast iron worm wheels are cheap and suitable for light loads. MC nylon worm wheels are highly wear-resistant and machinable. Aluminum bronze worm wheels are available and are good for applications with severe wear conditions.
When designing a worm wheel, it is vital to determine the correct lubricant for the worm shaft and a corresponding worm wheel. A suitable lubricant should have a kinematic viscosity of 300 mm2/s and be used for worm wheel sleeve bearings. The worm wheel and worm shaft should be properly lubricated to ensure their longevity.

Multi-start worms

A multi-start worm gear screw jack combines the benefits of multiple starts with linear output speeds. The multi-start worm shaft reduces the effects of single start worms and large ratio gears. Both types of worm gears have a reversible worm that can be reversed or stopped by hand, depending on the application. The worm gear’s self-locking ability depends on the lead angle, pressure angle, and friction coefficient.
A single-start worm has a single thread running the length of its shaft. The worm advances 1 tooth per revolution. A multi-start worm has multiple threads in each of its threads. The gear reduction on a multi-start worm is equal to the number of teeth on the gear minus the number of starts on the worm shaft. In general, a multi-start worm has 2 or 3 threads.
Worm gears can be quieter than other types of gears because the worm shaft glides rather than clicking. This makes them an excellent choice for applications where noise is a concern. Worm gears can be made of softer material, making them more noise-tolerant. In addition, they can withstand shock loads. Compared to gears with toothed teeth, worm gears have a lower noise and vibration rate.
worm shaft

CZPT whirling process

The CZPT whirling process for worm shafts raises the bar for precision gear machining in small to medium production volumes. The CZPT whirling process reduces thread rolling, increases worm quality, and offers reduced cycle times. The CZPT LWN-90 whirling machine features a steel bed, programmable force tailstock, and five-axis interpolation for increased accuracy and quality.
Its 4,000-rpm, 5-kW whirling spindle produces worms and various types of screws. Its outer diameters are up to 2.5 inches, while its length is up to 20 inches. Its dry-cutting process uses a vortex tube to deliver chilled compressed air to the cutting point. Oil is also added to the mixture. The worm shafts produced are free of undercuts, reducing the amount of machining required.
Induction hardening is a process that takes advantage of the whirling process. The induction hardening process utilizes alternating current (AC) to cause eddy currents in metallic objects. The higher the frequency, the higher the surface temperature. The electrical frequency is monitored through sensors to prevent overheating. Induction heating is programmable so that only certain parts of the worm shaft will harden.

Common tangent at an arbitrary point on both surfaces of the worm wheel

A worm gear consists of 2 helical segments with a helix angle equal to 90 degrees. This shape allows the worm to rotate with more than 1 tooth per rotation. A worm’s helix angle is usually close to 90 degrees and the body length is fairly long in the axial direction. A worm gear with a lead angle g has similar properties as a screw gear with a helix angle of 90 degrees.
The axial cross section of a worm gear is not conventionally trapezoidal. Instead, the linear part of the oblique side is replaced by cycloid curves. These curves have a common tangent near the pitch line. The worm wheel is then formed by gear cutting, resulting in a gear with 2 meshing surfaces. This worm gear can rotate at high speeds and still operate quietly.
A worm wheel with a cycloid pitch is a more efficient worm gear. It reduces friction between the worm and the gear, resulting in greater durability, improved operating efficiency, and reduced noise. This pitch line also helps the worm wheel engage more evenly and smoothly. Moreover, it prevents interference with their appearance. It also makes worm wheel and gear engagement smoother.
worm shaft

Calculation of worm shaft deflection

There are several methods for calculating worm shaft deflection, and each method has its own set of disadvantages. These commonly used methods provide good approximations but are inadequate for determining the actual worm shaft deflection. For example, these methods do not account for the geometric modifications to the worm, such as its helical winding of teeth. Furthermore, they overestimate the stiffening effect of the gearing. Hence, efficient thin worm shaft designs require other approaches.
Fortunately, several methods exist to determine the maximum worm shaft deflection. These methods use the finite element method, and include boundary conditions and parameter calculations. Here, we look at a couple of methods. The first method, DIN 3996, calculates the maximum worm shaft deflection based on the test results, while the second one, AGMA 6022, uses the root diameter of the worm as the equivalent bending diameter.
The second method focuses on the basic parameters of worm gearing. We’ll take a closer look at each. We’ll examine worm gearing teeth and the geometric factors that influence them. Commonly, the range of worm gearing teeth is 1 to four, but it can be as large as twelve. Choosing the teeth should depend on optimization requirements, including efficiency and weight. For example, if a worm gearing needs to be smaller than the previous model, then a small number of teeth will suffice.

China OEM Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine   with Hot sellingChina OEM Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine   with Hot selling