Tag Archives: laser machine

China wholesaler High Speed and Open Type and Double Drive Plate and Pipe Integrated Fibre Laser Cutting Machine near me factory

Product Description

ZPG LASER CUTTING MACHINE

PRODUCT PARAMETERS

 

Machine Bed Main Production Process

1.Plate welding

2.First time heat treatment: 650ºC,16 hours
3.Powder coating, second time heat treatment, 200ºC,time depend on size
4.Gantry Milling
5.Machine bed production finished

All the other process are done by ourselves.

Spary painting and second time heat treatment done in our Sheet Metal Factory.

Milling done in our Machining Workshop in Laser Manufacturing Base.

So we can not only control the quality better, but also shorten the production time.

Full Protection Sheet Metal Laser Cutting Machine
* Parallel interactive workbench, full enclosure protection, safe operation, doubled efficiency
* Lightweight gantry, aviation aluminum extrusion molding process, good dynamic performance and high stability
* Partition negative pressure dust removal, clean and environmentally friendly

Cutting Samples
Fiber laser cutter machine is used to cut mild steel, stainless steel, aluminum alloy, brass and other kinds of steel;applicable to sheet metal cutting, aviation, spaceflight, electronics, electrical appliances, subway parts, automobile, machinery,precision components, ships, metallurgical equipment, elevator, household appliances, gifts, arts and crafts, tool processing,advertising, various metal cutting industries.

 

Certificates & Honor
 

PACKING & SHIPPING

1)Packaging:
Whole film packaging machine; anti-collision package edge; fumigation-free plywood wooden box and pallets with iron binding belt.
2)Shipping:
We cooperate with best shipping company whose experience in the CZPT transportation will guarantee your machine safety. We also provide train transport, especially to Russia, Ukraine and other inland countries.

About ZPG Factory

The headquarters of Zhongpin Group is located in HangZhou, the spring city. It is a high-tech enterprise integrating R&D, manufacturing, sales and service of intelligent CNC laser equipment. It has 2 intelligent equipment brands, “PMSK” and “ZPG”. Focusing on the fields of intelligent manufacturing of customized furniture and laser cutting of metal materials, respectively, we are committed to providing global customers with intelligent equipment and automation application solutions in 2 major areas.
The group has a standardized intelligent equipment manufacturing base with a total area of more than 70,000 square meters, of which Xihu (West Lake) Dis. base covers an area of more than 60,000 square meters. It has built a high-level R&D center, a high-standard customer experience center, a business office building, and a staff restaurant. Standard machining center, the introduction of Japanese automatic welding robots, annealing heat treatment furnace, large shot blasting machine, CNC five-sided gantry milling, precision metal processing center and other CNC machining machines and high-precision testing equipment, to achieve 100% testing of key processes to ensure products Performance, quality and delivery time.
The company has established a complete distribution and after-sales service network system at home and abroad, with more than 30 offices in the country, and exports to more than 80 countries and regions including Russia, North America, Turkey, Vietnam, and Malaysia. The group’s laser cutting equipment products have achieved standardization and serialization, and serve global customers through domestic and overseas distribution service networks.
In the future, Zhongpin Group will continue to devote itself to creating a domestic first-class intelligent CNC laser equipment machinery manufacturing base and R&D base to provide global customers with better products and services.



 

FAQ:
1.Do you have after sales support?
Yes, we are happy to give advice and we also have skilled technicians available across the world, We need your machines running in order to keep your business running.

2.Are you factory or trading company?
We are a factory with many experience. The factory covers an area of 70,000 square meters.

3.What’s the function of fiber laser?
Fiber Laser is only used to cut metals like Stainless Steel, Carbon/Mild Steel, Galvanized Steel, etc. Non-metal is not ok.

4.What’s the max. cutting thickness?
Cutting thickness is related to laser power.
1000W: 5mm stainless steel, 12mm carbon steel
2000W: 10mm stainless steel, 18mm carbon steel
3000W: 10mm stainless steel, 20mm carbon steel, 10mm aluminum, 7mm brass, 4mm copper
4000W: 12mm stainless steel, 22mm carbon steel, 10mm aluminum, 10mm brass, 6mm copper
Note: only 1KW or above fiber laser could cut Aluminum, Copper, Brass and other high reflection sheet metal

 

“Any questions about our machines,please send inquiry,our people will contact you Immediatly!”

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China wholesaler High Speed and Open Type and Double Drive Plate and Pipe Integrated Fibre Laser Cutting Machine   near me factory China wholesaler High Speed and Open Type and Double Drive Plate and Pipe Integrated Fibre Laser Cutting Machine   near me factory

China high quality High Quality Drive Plate Metal Fiber Laser Cutting Machine with Great quality

Product Description

Galvanized Steel Coil Laser Cutting Machine
 
Super advantages of our design for the machine:
One machine with integrated 3 in 1 functions of uncoiling, feeding and cutting, unloading which breaks the traditional production method, with the  following advantages:
1.      saving labor cost: 1 worker can operator the machine
2.      saving material loading and unloading time, increasing production efficiency by 2times
3.      coil material cost is lower than sheet, straightening cost can be save 20usd/ton
4.      suitable for diversification and non-standard production, cutting file can be freely nested to save materials, material utilization rate is generally above 90%~95%
Product Description

Transportation

APPLICATION

 

Especially for Filing Cabinet, Kitchen ware, refrigerator, car and train cover cabinet, Chassis and Cabinets, rotors and so on production, and material sheet thickness less than 2mm carbon steel, stainless steel, silicon steel, galvanized steel and other metal roll materials. 
 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China high quality High Quality Drive Plate Metal Fiber Laser Cutting Machine   with Great qualityChina high quality High Quality Drive Plate Metal Fiber Laser Cutting Machine   with Great quality

China supplier Double Drive CNC Optical Fiber Laser Cutting Machine for Tube/Pipe and Metal Plates with Great quality

Product Description

 1. Hot selling model with latest laser technology, reliable and high cost effective.
 2. Plate welding machine bed with annealing treatment and natural aging process.
 3. Dual-drive gantry structure with reinforced aluminium alloy beam. Less weight and high speed.
 4. Applicable for different metal plate (Carbon steel,stainless steel,galvanized  steel,brass,aluminium,etc)
 5. Easy to use, applicable to different drawing format and low maintenance cost

Model F6015BE
Fiber Source German IPG / Chinese Raycus / Chinese MAX
Fiber Source Power 1 square meter head office integrating R & D, production and processing. We’ve got branches in HangZhou, HangZhou, HangZhou and ZheJiang .
2. Expensive high configuration processing equipment to guarantee the whole process quality.
3. Large exhibition hall and a proofing team to provide services for you at any time.
4. We are 1 of the largest purchasers of Raycus laser and WSX cutting head. As the strategic partners with them. we get the one-to-1 after-sales service provided by them in a timely manner.
5. 16 years of R & D and production experience in laser cutting industry to be 1 of leading laser equipment brand around the world. Our sales network covers more 60 countries and regions.
6. Experienced and responsive after sales team and service to solve your problems at the first time.

Quality Control

Packing&Shipping

1. Packaging
Whole film packaging machine; anti-collision package edge; wooden box and pallets.
2. Shipping
Our cooperated professional CZPT transportation will guarantee your machine safety.
We will provide the shipping methods according to your needs.

Guarantee&Service

Pre Sale Service

1. Provide technical guidance, equipment solutions and other information services according to your needs.
2. Welcome you to visit our company and equipment exhibition hall. And our engineers will offer the best explanation and demonstration. If you can’t come to us, we will do a live broadcast to show you our factory and machine.
3. Provide free cutting sample service.

Selling Service

1. Technicians would offer field installation, debugging and training when they come to the customer’s factory.
2. Ensure the equipment is delivered on time.
3. Train customer operators in strict accordance with the equipment operation process to ensure that they are proficient in the operation, maintenance and safe use of the equipment.

After-sale Service

1. One-year warranty for machine bed and free software upgrade. Two-year warranty for laser generators.
2. Except man-made factor, BAISHENG provide the repairing service during the warranty period.
3. We will establish communication group including technicians, after-sales managers, salesmen and operators of customers.

Customer Feedback

FAQ

Q: Are you really a manufacturer?
A: We are 1 of laser cutting machine manufacturer in the industry that independently develops and produces machine beds, cross beams, and sheet metal. We are a strong manufacturer with 100,000 square meters industrial park.
We are a professional manufacturer with 16 years of laser cutting machine production experience.
More than that, we have a strong R&D team composed of 80 engineers, and a after-sales team of 130 technicians. Over the years, we have collected many user feedback and constantly improved the machine quality; and we have excellent installation services and the best customer training system.

Q: How to choose the laser cutting machine?
A: You can choose the laser cutting machine according to the cutting thickness and material. If you are an entrepreneur, then ongratulations, Baisheng will provide you with comprehensive training and cost-effective products to help you earn money as soon as possible.

Q: Baisheng brand doesn’t seem very famous in our country. Can I trust Baisheng?
A: Sure! We have more than 16 years of experience in laser cutting machine R & D and production. Our brand awareness in China is very high, because our product quality and after-sales service are better than peers. Many customers are more willing to choose us. As for the overseas market, we also have many agents and distributors all over the world. In the past 2 years, we have officially launched overseas marketing. Our machines are so excellent that we would like to promote them all over the world. Our goal is to become a top laser machine brand in the world, so we pay more attention to market reputation and product quality. Trust us, Baisheng is your right choice!

Q: Could you give me more details of the laser cutting machines?
A: You could check more details in our website and . But it’s better for you to directly ask us if you want to know more about the details and price. Our sales will reply you in time within an hour!
So, just send us message or chat now!

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China supplier Double Drive CNC Optical Fiber Laser Cutting Machine for Tube/Pipe and Metal Plates   with Great qualityChina supplier Double Drive CNC Optical Fiber Laser Cutting Machine for Tube/Pipe and Metal Plates   with Great quality

China Standard 1000W High Speed Dual Drive Open Style 1530 CNC Metal Fiber Laser Cutting Machine with Free Design Custom

Product Description

Product Description

CG-3015E is fast speed mild steel cnc fiber laser cutting machine with 3000*1500mm working area, which consist of machine tool,motion parts, electrical equipment control parts, and other assist parts. Via control system to operation 3 axis motion parts,so it can drive to fiber laser cutting head achieve a stable, accurate, and high speed moving; X and Y axis of aluminium stainless steel sheet cutting machine adopt by imported with original packaging high quality and precision HIWIN linear CZPT rail, working table adopt by square pipe to welding the overall machine, stress relief annealing treat, the max load-bearing of mesa could get 500 KG, it also has universal ball bearing, machine external set up peripheral clamping device, use full enclosed dust proof device, photoelectric sensor, and other precise positioning parts to ensure accuracy of the transmission.
 

Parameters of laser cutting machine

Model CG-3015E
Laser type Fiber laser
 Laser source Raycus OR  other Brand
Laser wavelength 1070nm
Laser output power 1000W-6000W
Cutting area 3000X1500mm/4000X1500mm/4000X2000mm/6000X2500mm/13000X2500mm
Min. line width <0.1mm
Laser source Raycus/ MAX / IPG
Repeatability ±0.02mm
Operating temperature 0~ 40ºC
Electricity demand 380V/50Hz
Cooling method Water cooling
Continuous working time 24 hours
Max. operating speed 120m/min
Max. acceleration 1.2G
X/Y positioning accuracy 0.03mm
Min. slit width 0.15mm

Our advantage
1.The machine adopts a moving gantry structure, imported high-precision rack and linear guide, stable transmission and high precision.
2.The bed adopts an integral welded structure, and the beam adopts an integral cast aluminum structure, which has higher accuracy and better stability. The bed and beam are rough processed after annealing, and then subjected to vibration aging treatment, which can completely eliminate the stress of welding and processing, good rigidity, high precision, can keep long-term use without deformation.
3.The X, Y, and Z axes are all imported Japanese servo motors with high precision, high speed, large torque, large inertia, stable and durable performance. Ensure the high speed and acceleration of the whole machine.
4.It adopts Cypcut CNC system, which integrates many special function modules for laser cutting control, with powerful functions, good man-machine interface and simple operation.
5.The CNC cutting machine realizes the core technology of “full-time cutting, high-efficiency cutting and high nesting rate cutting”, which is the fundamental guarantee for effectively saving materials and improving cutting efficiency.
6.The cutting head uses Raytools fiber laser special cutting head and capacitive sensor, which has high sensing accuracy, sensitive response, and the most stable and reliable performance.
7.The high-precision electronically controlled proportional valve imported from Japan can precisely control the air pressure of the cutting auxiliary gas to achieve the best cutting effect.
8. Use advanced pneumatic double-chuck clamping system. The self-adjusting center of the chuck automatically adjusts the clamping force according to the profile specifications to ensure that the thin tube is clamped without damage. Quick corner cutting system. The corners respond quickly, greatly improving the cutting efficiency.
SAMPLE 
Applied in sheet metal processing, aviation, spaceflight, electronics, electrical appliances, subway parts, automobile, machinery, precision components, ships, metallurgical equipment, elevator, household appliances, gifts and crafts, tool processing, adornment, advertising, metal foreign processing various manufacturing processing industries.

Mainly used for cutting carbon steel, silicon steel, stainless steel, aluminum alloy, titanium alloy, galvanized steel sheet, pickling board, aluminum zinc plate, copper and many kinds of metal materials cutting and so on.
Cutting Capacity

1000W cutting process parameters

Materials

Thickness(mm)

speed(m/min)

Pressure(bar)

 

 

 

stainless steel

1

20-25

15

2

6-6.5

18

3

2.5-3

20

4

0.7-0.8

20

 

 

 

 

 

 Carbon steel

2

6.5-7

0.6

3

2.5-3

0.3

4

1.8-2.2

0.2

5

1.5-1.8

0.15

6

1.1-1.4

0.1

8

0.9-1.1

0.1

10

0.7-0.9

0.1

12

0.6-0.7

0.1

 

 

Aluminum Plate

1

10

1.2

2

5

1.4

3

1.5

1.8

 

        Brass

1

3

1.6

2

1.2

1.8

     Copper

1.5

1.8

1

Packaging & Shipping 
1)Packaging:
Whole film packaging machine; anti-collision package edge; fumigation-free plywood wooden box and pallets with iron binding belt.
2)Shipping:
We cooperate with SINOTRANS company whose experience in the CZPT transportation will guarantee your machine safety. We also provide train transport, especially to Russia, Ukraine and other inland countries.


Workshop
   ZheJiang Chaogong Laser Technology Co., Ltd. specializes in R&D and production of various laser equipment, such as laser cutting. All series machines are with Two-year’s warranty. Also our service support various languages, like English, French, Arabic, Spanish, Russian, Korean, Portuguese, German and so on. Meanwhile, customized equipment are available according to different requirements. 
  Within the field, Chaogong has passed CE and FDA qualifications. Moreover, Chaogong has successfully practiced ISO quality system and 5S management, which assures high-efficient production and products’ reliability. After years of hard work, Chaogong  products have made presence in more than 100 Countries such as North America, West Europe, South Asia, South America and Mid East etc.. Facing the chances and challenges of Global Economic Integration, as well as being offered with opportunities of Knowledge Economy Era, the self-motivated Chaogong stuff, brave and passionate, initiatively implement the enterprise management policy: “Scientific Management, Continuous Improvement, Rapid Development, Credit First, Quality First”. We aim to be a professional, branding, and International suppliers for various industrial solutions. 
FAQ

Q: Are you manufacturer ?
A: Yes, we are a laser equipment manufacturer integrating R&D, production and sales.  

Q: Can I get a machine basing on my own requirements?
A: Yes, we can offer OEM and ODM service to customers.  

Q: This is the first time I use this kind of machine, is it easy operate?
A: Don’ t worry, we will provide customers with videos of using guidance and English user’s manuals. If customers still have doubts, our customer service can keep in touch with our engineer at 7×24 hours online, through / / /mobile phone or email. Our engineer will help to solve your problems as soon as possible.

Q:What’s your MOQ and delivery?
A:Our MOQ is 1 set machine.

Q: If my machine is broken. Can you repair it for me?
A: Yes. We have free training online. If there is big trouble with your machine in the warranty time, we can repair it.

Types of Splines

There are 4 types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
splineshaft

Involute splines

The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents.
When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing.
A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals.
The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.

Parallel key splines

A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface.
A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials.
A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications.
The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
splineshaft

Involute helical splines

Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more.
Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer.
A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit.
The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the 2 components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.

Involute ball splines

When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion.
There are 3 basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints.
The 2 types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned.
The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
splineshaft

Keyed shafts

Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life.
Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery.
Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer.
Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.

China Standard 1000W High Speed Dual Drive Open Style 1530 CNC Metal Fiber Laser Cutting Machine   with Free Design CustomChina Standard 1000W High Speed Dual Drive Open Style 1530 CNC Metal Fiber Laser Cutting Machine   with Free Design Custom

China Professional Fiber Laser Marking Machine Engraving Metal Ak6090f Big Area Fiber Laser Engraving and Marking Machine with Module Drive with Hot selling

Product Description

 

Our Advantages

1) Guarantee 3 years guarantee of the whole machine, 1.5 years guarantee of the laser tube.
2) Software issue Our technician is CZPT to re-install or set up by remote for free.
3) Hardware issue Main parts(excluding the consumables) shall be replaced/repaired free of charge, if there is any problem during the warranty period.
4) Support online Our technician is CZPT to teach you online to run the machine or eliminate the fault for free.
5) Training in AccTek factory We are CZPT to train your staff after placed order in our factory for free.
6) On-site training (Recommended, the most effective way) We are CZPT to send technician to your workshop to do the installation and training. You will need bear the related costs(flight, visa, hotel, training costs, etc.)

Product Description

Main Features:

1) Compact: The high-tech product, which is combined of laser device, computer, auto controller and precision machinery.
2) High Precision: Re-position precision is 0.002 mm
3) High Speed: Imported scHangZhou system makes the scHangZhou speed is up to 7 000 mm/s
4) Easily Operating: Afford the specific marking software based on Windows, which is real-time adjust the laser power and pulse frequency. You can input and output by computer according to edit in the both of the specific marking software and the graphic software such as AutoCAD, CorelDRAW and Photoshop.
5) High Reliability: MTBF>100 000 hours
6) Energy Saving: The efficiency of optic-electrical converting is up to 30%
7) Low Running Cost: No consumable parts. Free maintaining.

Product Parameters

 

Model

AK6090F

Laser Generator

Raycus (option: IPG, JPT)

Laser Power

20W (option: 30W, 50W, 100W)

Laser Length

1064nm

Quality of Lase Beam

m2<1.5

Laser Repetition Frequency

≤100 KHz

Standard Marking Area

600*900mm (splicing design)

Engraving Depth

≤1.2mm

Engraving Speed

≤12 000 mm/s

Minimum Line Width

0.01mm

Minimum Character

0.05mm

Resolution Ratio

±0.001mm

Gross Power

≤500W

Working Voltage

200V/50Hz/10A

Cooling Mode

Air cooling

 

Application and Samples

Applicable Materials :
1) All metals: gold, silver, titanium, copper, alloy, aluminum, steel, manganese steel, magnesium, zinc, stainless steel, carbon steel, mild steel, all kinds of alloy steel, electrolytic plate, brass plate, galvanized sheet , Aluminum, all kinds of alloy plates, all kinds of sheet metal, rare metals, coated metal, anodized aluminum and other special surface treatment, electroplating the surface of the aluminum-magnesium alloy surface oxygen decomposition
2) Non-metallic: non-metallic coating materials, industrial plastics, hard plastics, rubber, ceramics, resins, cartons, leather, clothes , wood, paper, plexiglass, epoxy resin, acrylic resin, unsaturated polyester resin material

Applicable Industries :
1) Precision instruments, computer keyboards, auto parts, plumbing parts, communications equipment, medical equipment, bathroom equipment, hardware tools, luggage decoration, electronic components, home appliances, watches, molds, gaskets and Seals, data matrix, jewelry, cell phone keyboard, buckle, kitchenware, knives, cooker, stainless steel products, aerospace equipment, integrated circuit chips, computer accessories, signs molds, elevator equipment, wire and cable, Industrial bearings, building materials, hotel kitchen, pipelines.
2) Tobacco industry, bio-pharmaceutical industry, liquor industry, food packaging, beverage, CZPT care products, plastic buttons, bathing supplies, business cards, Clothing accessories, cosmetics packaging, car decoration, wood, logos, characters, serial number, bar code, PET, ABS, pipeline, advertising,logo

Company Profile

 

Different parts of the drive shaft

The driveshaft is the flexible rod that transmits torque between the transmission and the differential. The term drive shaft may also refer to a cardan shaft, a transmission shaft or a propeller shaft. Parts of the drive shaft are varied and include:
The driveshaft is a flexible rod that transmits torque from the transmission to the differential

When the driveshaft in your car starts to fail, you should seek professional help as soon as possible to fix the problem. A damaged driveshaft can often be heard. This noise sounds like “tak tak” and is usually more pronounced during sharp turns. However, if you can’t hear the noise while driving, you can check the condition of the car yourself.
The drive shaft is an important part of the automobile transmission system. It transfers torque from the transmission to the differential, which then transfers it to the wheels. The system is complex, but still critical to the proper functioning of the car. It is the flexible rod that connects all other parts of the drivetrain. The driveshaft is the most important part of the drivetrain, and understanding its function will make it easier for you to properly maintain your car.
Driveshafts are used in different vehicles, including front-wheel drive, four-wheel drive, and front-engine rear-wheel drive. Drive shafts are also used in motorcycles, locomotives and ships. Common front-engine, rear-wheel drive vehicle configurations are shown below. The type of tube used depends on the size, speed and strength of the drive shaft.
The output shaft is also supported by the output link, which has 2 identical supports. The upper part of the drive module supports a large tapered roller bearing, while the opposite flange end is supported by a parallel roller bearing. This ensures that the torque transfer between the differentials is efficient. If you want to learn more about car differentials, read this article.
air-compressor

It is also known as cardan shaft, propeller shaft or drive shaft

A propshaft or propshaft is a mechanical component that transmits rotation or torque from an engine or transmission to the front or rear wheels of a vehicle. Because the axes are not directly connected to each other, it must allow relative motion. Because of its role in propelling the vehicle, it is important to understand the components of the driveshaft. Here are some common types.
Isokinetic Joint: This type of joint guarantees that the output speed is the same as the input speed. To achieve this, it must be mounted back-to-back on a plane that bisects the drive angle. Then mount the 2 gimbal joints back-to-back and adjust their relative positions so that the velocity changes at 1 joint are offset by the other joint.
Driveshaft: The driveshaft is the transverse shaft that transmits power to the front wheels. Driveshaft: The driveshaft connects the rear differential to the transmission. The shaft is part of a drive shaft assembly that includes a drive shaft, a slip joint, and a universal joint. This shaft provides rotational torque to the drive shaft.
Dual Cardan Joints: This type of driveshaft uses 2 cardan joints mounted back-to-back. The center yoke replaces the intermediate shaft. For the duplex universal joint to work properly, the angle between the input shaft and the output shaft must be equal. Once aligned, the 2 axes will operate as CV joints. An improved version of the dual gimbal is the Thompson coupling, which offers slightly more efficiency at the cost of added complexity.
air-compressor

It transmits torque at different angles between driveline components

A vehicle’s driveline consists of various components that transmit power from the engine to the wheels. This includes axles, propshafts, CV joints and differentials. Together, these components transmit torque at different angles between driveline components. A car’s powertrain can only function properly if all its components work in harmony. Without these components, power from the engine would stop at the transmission, which is not the case with a car.
The CV driveshaft design provides smoother operation at higher operating angles and extends differential and transfer case life. The assembly’s central pivot point intersects the joint angle and transmits smooth rotational power and surface speed through the drivetrain. In some cases, the C.V. “U” connector. Drive shafts are not the best choice because the joint angles of the “U” joints are often substantially unequal and can cause torsional vibration.
Driveshafts also have different names, including driveshafts. A car’s driveshaft transfers torque from the transmission to the differential, which is then distributed to other driveline components. A power take-off (PTO) shaft is similar to a prop shaft. They transmit mechanical power to connected components. They are critical to the performance of any car. If any of these components are damaged, the entire drivetrain will not function properly.
A car’s powertrain can be complex and difficult to maintain. Adding vibration to the drivetrain can cause premature wear and shorten overall life. This driveshaft tip focuses on driveshaft assembly, operation, and maintenance, and how to troubleshoot any problems that may arise. Adding proper solutions to pain points can extend the life of the driveshaft. If you’re in the market for a new or used car, be sure to read this article.

it consists of several parts

“It consists of several parts” is 1 of 7 small prints. This word consists of 10 letters and is 1 of the hardest words to say. However, it can be explained simply by comparing it to a cow’s kidney. The cocoa bean has several parts, and the inside of the cocoa bean before bursting has distinct lines. This article will discuss the different parts of the cocoa bean and provide a fun way to learn more about the word.
air-compressor

Replacement is expensive

Replacing a car’s driveshaft can be an expensive affair, and it’s not the only part that needs servicing. A damaged drive shaft can also cause other problems. This is why getting estimates from different repair shops is essential. Often, a simple repair is cheaper than replacing the entire unit. Listed below are some tips for saving money when replacing a driveshaft. Listed below are some of the costs associated with repairs:
First, learn how to determine if your vehicle needs a driveshaft replacement. Damaged driveshaft components can cause intermittent or lack of power. Additionally, improperly installed or assembled driveshaft components can cause problems with the daily operation of the car. Whenever you suspect that your car needs a driveshaft repair, seek professional advice. A professional mechanic will have the knowledge and experience needed to properly solve the problem.
Second, know which parts need servicing. Check the u-joint bushing. They should be free of crumbs and not cracked. Also, check the center support bearing. If this part is damaged, the entire drive shaft needs to be replaced. Finally, know which parts to replace. The maintenance cost of the drive shaft is significantly lower than the maintenance cost. Finally, determine if the repaired driveshaft is suitable for your vehicle.
If you suspect your driveshaft needs service, make an appointment with a repair shop as soon as possible. If you are experiencing vibration and rough riding, driveshaft repairs may be the best way to prevent costly repairs in the future. Also, if your car is experiencing unusual noise and vibration, a driveshaft repair may be a quick and easy solution. If you don’t know how to diagnose a problem with your car, you can take it to a mechanic for an appointment and a quote.

China Professional Fiber Laser Marking Machine Engraving Metal Ak6090f Big Area Fiber Laser Engraving and Marking Machine with Module Drive   with Hot sellingChina Professional Fiber Laser Marking Machine Engraving Metal Ak6090f Big Area Fiber Laser Engraving and Marking Machine with Module Drive   with Hot selling

China wholesaler CNC Fiber Laser Stainless Steel Cutting Machine with High Precision Drive wholesaler

Product Description

CNC Fiber Laser Stainless Steel Cutting Machine with High Precision Drive

    CNC Laser Cutting Machine is automatic and high efficiency cutting equipment. CNC Laser Cutting Machine is widely used in all kinds of metal materials cutting, iron, mild steel, carbon steel, stainless steel, compound metal, aluminum, galvanzed sheet, coper plate, titanium alloy and nonferrous metal.

Model BKJ-F4571/6015/6571 Laser Cutting Machine
Working Area Size 4 working hours, and the laser sourse our machine is maintenance-free.

5. High speed and high efficiency

The cutting speed can reach tens of meters per minute.

 

 

1. 24 months guarantee of the whole cnc laser cutting machine. We will provide the consumable parts 
    at an agency price when you need replacement.
 
2. Our engineer could support you technology to your country if necessary.
 
3. Our enginner could service on weekend even on vacation.
 
4. Our engineer could train you on at our factory for free.
 
5. Our engineer could service you 24 hours online by Skype, Yahoo, QQ, E-mail, Whatsapp, or cellphone.

Q1: I know nothing about the machine, what kind of machine I should choose?

Very easy to choose.  
Just tell us what you want to do using this laser machine. And sending us a sample picture
 is better. Then we will send you a perfect solutions and suggestions. 

Q2: When I get this machine, but I don’t know how to use it. What should i do?

We will send you the English manual and CD video for machine using and maintaining with
 machine. If you still have some doubts, we can talk by telephone or  . Our engineer 
can also be sent to your country to install or adjust machine if necessary.
 
Q3:If some problems happened to this machine during warranty period, what should i do?
 
We will supply free parts for this machine during the warranty period if machine have any 
problems.We also supply free afterservice forever. So any doubts, just let us know, we will 
give you solutions within 30 min.

Q4: The machine delivery time 

For the standard machine model, the delivery time will be 15 working days 
For the customized machine model, the delivery time will be 20 working days.

Q5: Machine payment term 

We accept TT advance, 30% deposit, 70% balance payment before delivery, L/C payment, Online trade on Made-in-China.

What is a drive shaft?

If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
air-compressor

The drive shaft is a mechanical part

A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock.
Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them.
The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.

It transfers power from the engine to the wheels

A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed.
The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain.
The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.

It has a rubber boot that protects it from dust and moisture

To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
air-compressor

it has a U-shaped connector

The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped.
The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest.
Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.

it has a slide-in tube

The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications.
The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
air-compressor

It uses a bearing press to replace worn or damaged U-joints

A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly.
Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself.
If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.

China wholesaler CNC Fiber Laser Stainless Steel Cutting Machine with High Precision Drive   wholesaler China wholesaler CNC Fiber Laser Stainless Steel Cutting Machine with High Precision Drive   wholesaler

China wholesaler Zpg Double Drive Enclosed Type Exchange Table Fiber Laser Metal Cutting Machine Provide OEM ODM Italy/Brazil/Turkey/Russia/Small Desktop Laser Cutting Machines/ near me supplier

Product Description

Show pictures

Specification

item

value

Application

LASER CUTTING

Applicable Material

Metal

Condition

New

Laser Type

Fiber Laser

Cutting Area

1500mm*3000mm

Cutting Speed

132M/Min

Graphic Format Supported

AI, PLT, DXF, BMP, Dst, Dwg, LAS, DXP

Cutting Thickness

0-30mm

CNC or Not

Yes

Cooling Mode

WATER COOLING

Control Software

Cypcut2000

Place of Origin

China

 

ZheJiang

Brand Name

ZPG

Laser Source Brand

MAX/Raycus

Laser Head Brand

Raytools

Servo Motor Brand

Delta

Xihu (West Lake) Dis.rail Brand

Lapping

Control System Brand

Cypcut

Weight (KG)

3500KG

Key Selling Points

Automatic

Applicable Industries

Hotels, Garment Shops, Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Farms, Restaurant, Home Use, Retail, Food Shop, Printing Shops, Construction works , Energy & Mining, Food & Beverage Shops, Other, Advertising Company

Machinery Test Report

Provided

Video outgoing-inspection

Provided

Warranty of core components

3 years

Core Components

Pressure vessel, Motor, Bearing, Pump, Gearbox, Engine

Mode of Operation

continuous wave

Configuration

3-axis

Products handled

Sheet Metal

Feature

Water-cooled

Showroom Location

Italy/Brazil/Russia 

After-sales Service Provided

Overseas Service Provided

Xihu (West Lake) Dis. rail

ZheJiang Lapping

Control system

Cypcut2000 System

Laser head

Swiss Raytools Auto-following

Laser source

IPG Raycus MAX JPT

Laser Cutting Head

Raytools Automatic Height Adjusting

Max cutting speed

140m/min

Working Voltage

customized

Cooling system

Water Cooling System

cutting samples
Company Profile
The headquarters of Zhongpin Group is located in HangZhou, the spring city. It is a high-tech enterprise integrating R&D, manufacturing, sales and service of intelligent CNC laser equipment. It has 2 intelligent equipment brands, “PMSK” and “ZPG”. Focusing on the fields of intelligent manufacturing of customized furniture and laser cutting of metal materials, respectively, we are committed to providing global customers with intelligent equipment and automation application solutions in 2 major areas. The group has a standardized intelligent equipment manufacturing base with a total area of more than 70,000 square meters, of which Xihu (West Lake) Dis. base covers an area of more than 60,000 square meters. It has built a high-level R&D center, a high-standard customer experience center, a business office building, and a staff restaurant. Standard machining center, the introduction of Japanese automatic welding robots, annealing heat treatment furnace, large shot blasting machine, CNC five-sided gantry milling, precision metal processing center and other CNC machining machines and high-precision testing equipment, to achieve 100% testing of key processes to ensure products Performance, quality and delivery time. The company has established a complete distribution and after-sales service network system at home and abroad, with more than 30 offices in the country, and exports to more than 80 countries and regions including Russia, North America, Turkey, Vietnam, and Malaysia. The group’s laser cutting equipment products have achieved standardization and serialization, and serve global customers through domestic and overseas distribution service networks. In the future, Zhongpin Group will continue to devote itself to creating a domestic first-class intelligent CNC laser equipment machinery manufacturing base and R&D base to provide global customers with better products and services.
showroom
Factory
Bed making process

1.Plate welding
2.First time heat treatment: 650ºC,16 hours
3.Powder coating, second time heat treatment, 200ºC,time depend on size
4.Gantry Milling
5.Machine bed production finished

All the other process are done by ourselves.

Spary painting and second time heat treatment done in our Sheet Metal Factory.

Milling done in our Machining Workshop in Laser Manufacturing Base.

So we can not only control the quality better, but also shorten the production time.

certification
wooden Packing 
Packaging: Whole film packaging machine; anti-collision package edge; fumigation-free plywood wooden box and pallets with iron binding belt. 2)Shipping: We cooperate with the company whose experience in the CZPT transportation will guarantee your machine safety. We also provide train transport, especially to Russia, Ukraine and other inland countries.
Q&A
Q1:Are you a factory or a trading company?

A1:We are a factory with rich experience, covering an area of 70,000 square meters.

Q2:How do we guarantee quality?
A2:It is always a pre-production sample before mass production; Always perform a final inspection before shipment; Provide production, delivery, samples, etc. videos at all times.
Q3:Why should you buy from us instead of other suppliers?
A3:We are factory direct sales, with guaranteed quality and competitive prices.
Q4:Do you have after-sales support?
A4:Yes, we are happy to provide suggestions, and we also have skilled technicians.
Q5:What services can we provide?
A5:Accepted delivery terms: FOB, CFR, CIF, EXW, FAS, CIP, FCA, CPT, DEQ, DDP, DDU, express, DAF, DES; Accepted payment types: T/T, L/C,credit card, Western Union, cash, escrow; Languages: English, Chinese, Spanish, Japanese, Portuguese, German, Arabic, French, Russian, Korean, Hindi, Italian

The Four Basic Components of a Screw Shaft

There are 4 basic components of a screw shaft: the Head, the Thread angle, and the Threaded shank. These components determine the length, shape, and quality of a screw. Understanding how these components work together can make purchasing screws easier. This article will cover these important factors and more. Once you know these, you can select the right type of screw for your project. If you need help choosing the correct type of screw, contact a qualified screw dealer.

Thread angle

The angle of a thread on a screw shaft is the difference between the 2 sides of the thread. Threads that are unified have a 60 degree angle. Screws have 2 parts: a major diameter, also known as the screw’s outside diameter, and a minor diameter, or the screw’s root diameter. A screw or nut has a major diameter and a minor diameter. Each has its own angle, but they all have 1 thing in common – the angle of thread is measured perpendicularly to the screw’s axis.
The pitch of a screw depends on the helix angle of the thread. In a single-start screw, the lead is equal to the pitch, and the thread angle of a multiple-start screw is based on the number of starts. Alternatively, you can use a square-threaded screw. Its square thread minimizes the contact surface between the nut and the screw, which improves efficiency and performance. A square thread requires fewer motors to transfer the same load, making it a good choice for heavy-duty applications.
A screw thread has 4 components. First, there is the pitch. This is the distance between the top and bottom surface of a nut. This is the distance the thread travels in a full revolution of the screw. Next, there is the pitch surface, which is the imaginary cylinder formed by the average of the crest and root height of each tooth. Next, there is the pitch angle, which is the angle between the pitch surface and the gear axis.
screwshaft

Head

There are 3 types of head for screws: flat, round, and hexagonal. They are used in industrial applications and have a flat outer face and a conical interior. Some varieties have a tamper-resistant pin in the head. These are usually used in the fabrication of bicycle parts. Some are lightweight, and can be easily carried from 1 place to another. This article will explain what each type of head is used for, and how to choose the right 1 for your screw.
The major diameter is the largest diameter of the thread. This is the distance between the crest and the root of the thread. The minor diameter is the smaller diameter and is the distance between the major and minor diameters. The minor diameter is half the major diameter. The major diameter is the upper surface of the thread. The minor diameter corresponds to the lower extreme of the thread. The thread angle is proportional to the distance between the major and minor diameters.
Lead screws are a more affordable option. They are easier to manufacture and less expensive than ball screws. They are also more efficient in vertical applications and low-speed operations. Some types of lead screws are also self-locking, and have a high coefficient of friction. Lead screws also have fewer parts. These types of screw shafts are available in various sizes and shapes. If you’re wondering which type of head of screw shaft to buy, this article is for you.

Threaded shank

Wood screws are made up of 2 parts: the head and the shank. The shank is not threaded all the way up. It is only partially threaded and contains the drive. This makes them less likely to overheat. Heads on wood screws include Oval, Round, Hex, Modified Truss, and Flat. Some of these are considered the “top” of the screw.
Screws come in many sizes and thread pitches. An M8 screw has a 1.25-mm thread pitch. The pitch indicates the distance between 2 identical threads. A pitch of 1 is greater than the other. The other is smaller and coarse. In most cases, the pitch of a screw is indicated by the letter M followed by the diameter in millimetres. Unless otherwise stated, the pitch of a screw is greater than its diameter.
Generally, the shank diameter is smaller than the head diameter. A nut with a drilled shank is commonly used. Moreover, a cotter pin nut is similar to a castle nut. Internal threads are usually created using a special tap for very hard metals. This tap must be followed by a regular tap. Slotted machine screws are usually sold packaged with nuts. Lastly, studs are often used in automotive and machine applications.
In general, screws with a metric thread are more difficult to install and remove. Fortunately, there are many different types of screw threads, which make replacing screws a breeze. In addition to these different sizes, many of these screws have safety wire holes to keep them from falling. These are just some of the differences between threaded screw and non-threaded. There are many different types of screw threads, and choosing the right 1 will depend on your needs and your budget.
screwshaft

Point

There are 3 types of screw heads with points: cone, oval, and half-dog. Each point is designed for a particular application, which determines its shape and tip. For screw applications, cone, oval, and half-dog points are common. Full dog points are not common, and they are available in a limited number of sizes and lengths. According to ASTM standards, point penetration contributes as much as 15% of the total holding power of the screw, but a cone-shaped point may be more preferred in some circumstances.
There are several types of set screws, each with its own advantage. Flat-head screws reduce indentation and frequent adjustment. Dog-point screws help maintain a secure grip by securing the collar to the screw shaft. Cup-point set screws, on the other hand, provide a slip-resistant connection. The diameter of a cup-point screw is usually half of its shaft diameter. If the screw is too small, it may slack and cause the screw collar to slip.
The UNF series has a larger area for tensile stress than coarse threads and is less prone to stripping. It’s used for external threads, limited engagement, and thinner walls. When using a UNF, always use a standard tap before a specialized tap. For example, a screw with a UNF point is the same size as a type C screw but with a shorter length.

Spacer

A spacer is an insulating material that sits between 2 parts and centers the shaft of a screw or other fastener. Spacers come in different sizes and shapes. Some of them are made of Teflon, which is thin and has a low coefficient of friction. Other materials used for spacers include steel, which is durable and works well in many applications. Plastic spacers are available in various thicknesses, ranging from 4.6 to 8 mm. They’re suitable for mounting gears and other items that require less contact surface.
These devices are used for precision fastening applications and are essential fastener accessories. They create clearance gaps between the 2 joined surfaces or components and enable the screw or bolt to be torqued correctly. Here’s a quick guide to help you choose the right spacer for the job. There are many different spacers available, and you should never be without one. All you need is a little research and common sense. And once you’re satisfied with your purchase, you can make a more informed decision.
A spacer is a component that allows the components to be spaced appropriately along a screw shaft. This tool is used to keep space between 2 objects, such as the spinning wheel and an adjacent metal structure. It also helps ensure that a competition game piece doesn’t rub against an adjacent metal structure. In addition to its common use, spacers can be used in many different situations. The next time you need a spacer, remember to check that the hole in your screw is threaded.
screwshaft

Nut

A nut is a simple device used to secure a screw shaft. The nut is fixed on each end of the screw shaft and rotates along its length. The nut is rotated by a motor, usually a stepper motor, which uses beam coupling to accommodate misalignments in the high-speed movement of the screw. Nuts are used to secure screw shafts to machined parts, and also to mount bearings on adapter sleeves and withdrawal sleeves.
There are several types of nut for screw shafts. Some have radial anti-backlash properties, which prevent unwanted radial clearances. In addition, they are designed to compensate for thread wear. Several nut styles are available, including anti-backlash radial nuts, which have a spring that pushes down on the nut’s flexible fingers. Axial anti-backlash nuts also provide thread-locking properties.
To install a ball nut, you must first align the tangs of the ball and nut. Then, you must place the adjusting nut on the shaft and tighten it against the spacer and spring washer. Then, you need to lubricate the threads, the ball grooves, and the spring washers. Once you’ve installed the nut, you can now install the ball screw assembly.
A nut for screw shaft can be made with either a ball or a socket. These types differ from hex nuts in that they don’t need end support bearings, and are rigidly mounted at the ends. These screws can also have internal cooling mechanisms to improve rigidity. In this way, they are easier to tension than rotating screws. You can also buy hollow stationary screws for rotator nut assemblies. This type is great for applications requiring high heat and wide temperature changes, but you should be sure to follow the manufacturer’s instructions.

China wholesaler Zpg Double Drive Enclosed Type Exchange Table Fiber Laser Metal Cutting Machine Provide OEM ODM Italy/Brazil/Turkey/Russia/Small Desktop Laser Cutting Machines/   near me supplier China wholesaler Zpg Double Drive Enclosed Type Exchange Table Fiber Laser Metal Cutting Machine Provide OEM ODM Italy/Brazil/Turkey/Russia/Small Desktop Laser Cutting Machines/   near me supplier

China Professional 500W/1000W CNC Automatic CNC Engraving Fiber Laser Cutter /Laser Cutting Machine for Metal/Steel Sheet/Carbon/Brass/Aluminum with Good quality

Product Description

KH-3015 Fiber Laser Cutting Machine

Features:

1.The medium-power laser cutting machine with the highest precision in China, it can cut small metal bike design with size of half a coin.

2.Equipped with original japan imported servo motor and ZheJiang precise ball screw CZPT rail, highest speed up to 40m/min and accelerated speed up to 1 G, 120 holes can be cut within 1 minute.

3.Integrated machine accessories, fast disassembly, left and right drawers collecting saves space.

4.Professionally cutting 0.5-14mm carbon steel, 0.5-10mm stainless steel, galvanized steel, eletrogalvanized metal sheet, silicium steel and some other kinds of thin metal sheets.  (The laser brand can be customized, power optional from 500w-3000w )
 

SPECIFICATION OF KH-3015 FIBER LASER CUTTING MACHINE
Working area 1500 mm * 3000mm
Laser Power 500W/ 1000W/ 2000W/ 3000W
Laser Type Fiber laser, water-cooling
Laser wavelength 1080nm
Running speed 0-60m/min
CNC or Not CNC
Resetting Position Accuracy ≤±0.01mm
Control Software Cypcut, Weihong
Operating Temperature 0 – 40 ° C
Graphic format supported BMP, HPGL(PLT), JPEG, DXF,AI, DST
Transfer method Double drive rack and pinion
Drive modor Imported servo motor and servo drive
Applied material Carbon steel/SS and other metal plates
Warranty 2 Years
Packing Dimension 3900mm * 2500mm * 2000mm (L*W*H) 
Net Weight Approximately 3000 KG

 

Applicable materials for laser cutting machine for metal

Fiber Laser Cutting Equipment is suitable for metal cutting with Stainless Steel Sheet, Mild Steel Plate, Carbon Steel Sheet, Alloy Steel Plate, Spring Steel Sheet, Iron Plate, Galvanized Iron, Galvanized Sheet, Aluminum Plate, Copper Sheet, Brass Sheet, Bronze Plate, Gold Plate, Silver Plate, Titanium Plate, Metal Sheet, Metal Plate, Tubes and Pipes, etc.

Application Industries 

Fiber Laser Cutting Machine is widely used in manufacturing Billboard, Advertising, Signs, Signage, Metal Letters, LED Letters, Kitchen Ware, Advertising Letters, Sheet Metal Processing, Metals Components and Parts, Ironware, Chassis, Racks & Cabinets Processing, Metal Crafts, Metal Art Ware, Elevator Panel Cutting, Hardware, Auto Parts, Glasses Frame, Electronic Parts, Nameplates, etc.

Configuration:

Configuration for fiber metal laser cutting machine

3000*1500mm working area;

Raytools laser cutting head;

X,Y axis Japan YASKAWA/ CZPT servo motor;

Z axis Japan CZPT servo motor;

ZheJiang HIWIN guide rail;

ZheJiang YYC gear rack;

Japan SHIMPO reducer;  

ZheJiang TBI ball screw;

Japan /ZheJiang pneumatic components;

France Schneider electrical components;

Cypcut control system.

Application:

Packaging & Shipping

1. Kahan CNC machine and accessories are covered by plastic sheet first.
2. Then the whole machine is packed by plywood case used for export. 
3. Kahan CNC machine can be delivered by sea, by train, or by plane depending on customers.

 

Delivery Detail:

Shipped in 15-30 working days after payment.

Guarantee:

2 years warranty for the whole machine. Within 24 months under normal use and maintenance, if something is wrong with the machine, you will get spare part for free. After 24 months, you will get spare parts at cost price. You will also get technical support and service all the lifetime.

Technical support:

1. Technical support by phone, email or WhatsApp/Skype around the clock.
2. Friendly English version manual and operation video CD disk.
3. If needed, we can send our engineer to your site for training or you can send the operator to our factory for training.

After sales services: 

Normal machine is properly adjusted before dispatch. You will be CZPT to use the machine immediately after received machine. Besides, you will be CZPT to get free training advice towards our machine in our factory. You will also get free suggestion and consultation, technical support and service by email/WhatsApp/tel etc.

FAQ

Q: There are so many machine types, which 1 should I choose?
A: Kahan Laser provides machine parameters in each product demo page, please kindly check technical data column. It is important to compare all data before choose the best prototype. Also, our sales team provides online services to resolve your confusion, feel free to contact us.

Q:This is my first time buying your machine; I have no ideas about Kahan’s machines quality?
A: Each machine is strictly produced based on the standard of ISO9000-2000, ISO14001-2004, GMC global manufacturer and CE certifications. Our products have CE certifications verified by TÜV SÜD, Bureau Veritas and etc. As china high-power laser cutting machine provider, more than 10,000 machines have been sold in the past 10 years. Customer is our first priority. We are confident to tell customers that there is no need to worry about our quality.

Q: When I got this machine, but I don’t know how to use it. What should I do?
A:There are videos and English manual with the machine. If you still have some doubts, we can talk by telephone or email.

Q: If some problems happen to this machine during warranty period, what should I do?
A: We will supply free parts during machine warranty period if machine have some problems. While we also supply free life long after-sales service. If you have any question,just contact us freely.

What is a driveshaft and how much does it cost to replace one?

Your vehicle is made up of many moving parts. Knowing each part is important because a damaged driveshaft can seriously damage other parts of the car. You may not know how important your driveshaft is, but it’s important to know if you want to fix your car. In this article, we’ll discuss what a driveshaft is, what its symptoms are, and how much it costs to replace a driveshaft.
air-compressor

Repair damaged driveshafts

A damaged driveshaft does not allow you to turn the wheels freely. It also exposes your vehicle to higher repair costs due to damaged driveshafts. If the drive shaft breaks while the car is in motion, it may cause a crash. Also, it can significantly affect the performance of the car. If you don’t fix the problem right away, you could risk more expensive repairs. If you suspect that the drive shaft is damaged, do the following.
First, make sure the drive shaft is protected from dust, moisture, and dust. A proper driveshaft cover will prevent grease from accumulating in the driveshaft, reducing the chance of further damage. The grease will also cushion the metal-to-metal contact in the constant velocity joints. For example, hitting a soft material is better than hitting a metal wall. A damaged prop shaft can not only cause difficult cornering, but it can also cause the vehicle to vibrate, which can further damage the rest of the drivetrain.
If the driveshaft is damaged, you can choose to fix it yourself or take it to a mechanic. Typically, driveshaft repairs cost around $200 to $300. Parts and labor may vary based on your vehicle type and type of repair. These parts can cost up to $600. However, if you don’t have a mechanical background, it’s better to leave it to a professional.
If you notice that 1 of the 2 drive shafts is worn, it’s time to repair it. Worn bushings and bearings can cause the drive shaft to vibrate unnecessarily, causing it to break and cause further damage. You can also check the center bearing if there is any play in the bearing. If these symptoms occur, it is best to take your car to a mechanic as soon as possible.
air-compressor

Learn about U-joints

While most vehicles have at least 1 type of U-joint, there are other types available. CV joints (also known as hot rod joints) are used in a variety of applications. The minor axis is shorter than the major axis on which the U-joint is located. In both cases, the U-joints are lubricated at the factory. During servicing, the drive shaft slip joint should be lubricated.
There are 2 main styles of U-joints, including forged and press fit. They are usually held in place by C-clamps. Some of these U-joints have knurls or grooves. When selecting the correct fitting, be sure to measure the entire fitting. To make sure you get the correct size, you can use the size chart or check the manual for your specific model.
In addition to lubrication, the condition of the U-joint should be checked regularly. Lubricate them regularly to avoid premature failure. If you hear a clicking sound when shifting gears, the u-joint space may be misaligned. In this case, the bearing may need to be serviced. If there is insufficient grease in the bearings, the universal joint may need to be replaced.
U-joint is an important part of the automobile transmission shaft. Without them, your car would have no wheeled suspension. Without them, your vehicle will have a rickety front end and a wobbly rear end. Because cars can’t drive on ultra-flat surfaces, they need flexible driveshafts. The U-joint compensates for this by allowing it to move up and down with the suspension.
A proper inspection will determine if your u-joints are loose or worn. It should be easy to pull them out. Make sure not to pull them all the way out. Also, the bearing caps should not move. Any signs of roughness or wear would indicate a need for a new UJ. Also, it is important to note that worn UJs cannot be repaired.

Symptoms of Driveshaft Failure

One of the most common problems associated with a faulty driveshaft is difficulty turning the wheels. This severely limits your overall control over the vehicle. Fortunately, there are several symptoms that could indicate that your driveshaft is failing. You should take immediate steps to determine the cause of the problem. One of the most common causes of driveshaft failure is a weak or faulty reverse gear. Other common causes of driveshaft damage include driving too hard, getting stuck in reverse gear and differential lock.
Another sign of a failed driveshaft is unusual noise while driving. These noises are usually the result of wear on the bushings and bearings that support the drive shaft. They can also cause your car to screech or scratch when switching from drive to idle. Depending on the speed, the noise may be accompanied by vibration. When this happens, it’s time to send your vehicle in for a driveshaft replacement.
One of the most common symptoms of driveshaft failure is noticeable jitter when accelerating. This could be a sign of a loose U-joint or worn center bearing. You should thoroughly inspect your car to determine the cause of these sounds and corresponding symptoms. A certified mechanic can help you determine the cause of the noise. A damaged propshaft can severely limit the drivability of the vehicle.
Regular inspection of the drive shaft can prevent serious damage. Depending on the damage, you can replace the driveshaft for anywhere from $500 to $1,000. Depending on the severity of the damage and the level of repair, the cost will depend on the number of parts that need to be replaced. Do not drive with a bad driveshaft as it can cause a serious crash. There are several ways to avoid this problem entirely.
The first symptom to look for is a worn U-joint. If the U-joint comes loose or moves too much when trying to turn the steering wheel, the driveshaft is faulty. If you see visible rust on the bearing cap seals, you can take your car to a mechanic for a thorough inspection. A worn u-joint can also indicate a problem with the transmission.
air-compressor

The cost of replacing the drive shaft

Depending on your state and service center, a driveshaft repair can cost as little as $300 or as high as $2,000, depending on the specifics of your car. Labor costs are usually around $70. Prices for the parts themselves range from $400 to $600. Labor costs also vary by model and vehicle make. Ultimately, the decision to repair or replace the driveshaft will depend on whether you need a quick car repair or a full car repair.
Some cars have 2 separate driveshafts. One goes to the front and the other goes to the back. If your car has 4 wheel drive, you will have two. If you’re replacing the axles of an all-wheel-drive car, you’ll need a special part for each axle. Choosing the wrong 1 can result in more expensive repairs. Before you start shopping, you should know exactly how much it will cost.
Depending on the type of vehicle you own, a driveshaft replacement will cost between PS250 and PS500. Luxury cars can cost as much as PS400. However, for safety and the overall performance of the car, replacing the driveshaft may be a necessary repair. The cost of replacing a driveshaft depends on how long your car has been on the road and how much wear and tear it has experienced. There are some symptoms that indicate a faulty drive shaft and you should take immediate action.
Repairs can be expensive, so it’s best to hire a mechanic with experience in the field. You’ll be spending hundreds of dollars a month, but you’ll have peace of mind knowing the job will be done right. Remember that you may want to ask a friend or family member to help you. Depending on the make and model of your car, replacing the driveshaft is more expensive than replacing the parts and doing it yourself.
If you suspect that your drive shaft is damaged, be sure to fix it as soon as possible. It is not advisable to drive a car with abnormal vibration and sound for a long time. Fortunately, there are some quick ways to fix the problem and avoid costly repairs later. If you’ve noticed the symptoms above, it’s worth getting the job done. There are many signs that your driveshaft may need service, including lack of power or difficulty moving the vehicle.

China Professional 500W/1000W CNC Automatic CNC Engraving Fiber Laser Cutter /Laser Cutting Machine for Metal/Steel Sheet/Carbon/Brass/Aluminum     with Good qualityChina Professional 500W/1000W CNC Automatic CNC Engraving Fiber Laser Cutter /Laser Cutting Machine for Metal/Steel Sheet/Carbon/Brass/Aluminum     with Good quality

China Good quality Kh-6060 High Presion Laser Cutter Fiber Laser Cutting Machine for Metal Cutting 1000W with Best Sales

Product Description

KH-6060 Fiber Laser Cutting Machine

Features:

1.The medium-power laser cutting machine with the highest precision in China, it can cut small metal bike design with size of half a coin.

2.Equipped with original japan imported servo motor and ZheJiang precise ball screw CZPT rail, highest speed up to 40m/min and accelerated speed up to 2.5 G, 120 holes can be cut within 1 minute.

3.Integrated machine accessories, fast disassembly, left and right drawers collecting saves space.

4.Professionally cutting 0.5-14mm carbon steel, 0.5-10mm stainless steel, galvanized steel, eletrogalvanized metal sheet, silicium steel and some other kinds of thin metal sheets.  (The laser brand can be customized, power optional from 500w-3000w )
 

SPECIFICATION OF KH-6060 FIBER LASER CUTTING MACHINE
Working area 600 mm * 600mm
Laser Power 1000W/ 2000W/ 3000W
Laser Type Fiber laser, water-cooling
Laser wavelength 1080nm
Running speed 0-60m/min
CNC or Not CNC
Resetting Position Accuracy ≤±0.01mm
Control Software Cypcut, Weihong
Operating Temperature 0 – 40 ° C
Graphic format supported BMP, HPGL(PLT), JPEG, DXF,AI, DST
Transfer method Double drive rack and pinion
Drive modor Imported servo motor and servo drive
Applied material Carbon steel/SS and other metal plates
Warranty 2 Years
Packing Dimension 1700mm* 1300mm* 2000mm(L*W*H) 
Net Weight Approximately 1500 KG

 

Applicable materials for laser cutting machine for metal

Fiber Laser Cutting Equipment is suitable for metal cutting with Stainless Steel Sheet, Mild Steel Plate, Carbon Steel Sheet, Alloy Steel Plate, Spring Steel Sheet, Iron Plate, Galvanized Iron, Galvanized Sheet, Aluminum Plate, Copper Sheet, Brass Sheet, Bronze Plate, Gold Plate, Silver Plate, Titanium Plate, Metal Sheet, Metal Plate, Tubes and Pipes, etc.

Application Industries 

Fiber Laser Cutting Machine is widely used in manufacturing Billboard, Advertising, Signs, Signage, Metal Letters, LED Letters, Kitchen Ware, Advertising Letters, Sheet Metal Processing, Metals Components and Parts, Ironware, Chassis, Racks & Cabinets Processing, Metal Crafts, Metal Art Ware, Elevator Panel Cutting, Hardware, Auto Parts, Glasses Frame, Electronic Parts, Nameplates, etc.

Configuration:

Configuration for fiber metal laser cutting machine

600*600mm working area;

Raytools laser cutting head;

X,Y axis Japan YASKAWA/ CZPT servo motor;

Z axis Japan CZPT servo motor;

ZheJiang HIWIN guide rail;

ZheJiang YYC gear rack;

Japan SHIMPO reducer;  

ZheJiang TBI ball screw;

Japan /ZheJiang pneumatic components;

France Schneider electrical components;

Cypcut control system.

Application:

Packaging & Shipping

1. Kahan CNC machine and accessories are covered by plastic sheet first.
2. Then the whole machine is packed by plywood case used for export. 
3. Kahan CNC machine can be delivered by sea, by train, or by plane depending on customers.

 

Delivery Detail:

Shipped in 15-30 working days after payment.

Guarantee:

2 years warranty for the whole machine. Within 24 months under normal use and maintenance, if something is wrong with the machine, you will get spare part for free. After 24 months, you will get spare parts at cost price. You will also get technical support and service all the lifetime.

Technical support:

1. Technical support by phone, email or WhatsApp/Skype around the clock.
2. Friendly English version manual and operation video CD disk.
3. If needed, we can send our engineer to your site for training or you can send the operator to our factory for training.

After sales services: 

Normal machine is properly adjusted before dispatch. You will be CZPT to use the machine immediately after received machine. Besides, you will be CZPT to get free training advice towards our machine in our factory. You will also get free suggestion and consultation, technical support and service by email/WhatsApp/tel etc.

FAQ

Q: There are so many machine types, which 1 should I choose?
A: Kahan Laser provides machine parameters in each product demo page, please kindly check technical data column. It is important to compare all data before choose the best prototype. Also, our sales team provides online services to resolve your confusion, feel free to contact us.

Q:This is my first time buying your machine; I have no ideas about Kahan’s machines quality?
A: Each machine is strictly produced based on the standard of ISO9000-2000, ISO14001-2004, GMC global manufacturer and CE certifications. Our products have CE certifications verified by TÜV SÜD, Bureau Veritas and etc. As china high-power laser cutting machine provider, more than 10,000 machines have been sold in the past 10 years. Customer is our first priority. We are confident to tell customers that there is no need to worry about our quality.

Q: When I got this machine, but I don’t know how to use it. What should I do?
A:There are videos and English manual with the machine. If you still have some doubts, we can talk by telephone or email.

Q: If some problems happen to this machine during warranty period, what should I do?
A: We will supply free parts during machine warranty period if machine have some problems. While we also supply free life long after-sales service. If you have any question,just contact us freely.

What is a drive shaft?

If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
air-compressor

The drive shaft is a mechanical part

A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock.
Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them.
The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.

It transfers power from the engine to the wheels

A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed.
The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain.
The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.

It has a rubber boot that protects it from dust and moisture

To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
air-compressor

it has a U-shaped connector

The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped.
The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest.
Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.

it has a slide-in tube

The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications.
The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
air-compressor

It uses a bearing press to replace worn or damaged U-joints

A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly.
Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself.
If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.

China Good quality Kh-6060 High Presion Laser Cutter Fiber Laser Cutting Machine for Metal Cutting 1000W     with Best SalesChina Good quality Kh-6060 High Presion Laser Cutter Fiber Laser Cutting Machine for Metal Cutting 1000W     with Best Sales

China Custom 2D 3D Crystal Glass Photo Laser Engraving Machine for Gift with Good quality

Product Description

 2D 3D Crystal Glass Photo Laser Engraving Machine For Gift

Product Description
2D/3D crystal glass laser engraving machine widely use in 2D, 3D personalized customized photos inside engraving on crystal, glass and Acrylic.
The laser engraving machine is really a fine processing machine with advantages of high fidelity and high stability, which is definitely suitable for fine model engraving processing centers, photo printing shops, personalized gifts shops, crystal gifts mass production ,that’s elaboration for your home decoration.

HOLY LASER’s 3D Laser engraving machine is your most distinguished source on the internet for 3D Photo Crystals and other 3D Laser Gifts. Providing you with a Perfect 3D laser gifts and then adding your personalized greeting or message using our high tech laser engraving technology. 3D crystals customized into 3-dimensional designs of your photo engraved deep inside of a beautiful optical crystal shape of your choice.
Personalized 3D photo crystals are the ultimate gift. Give a personalized and unique gift for holidays, birthdays, weddings, anniversaries, awards, memorials or to that special someone in your life. Our 3D crystal gifts are engraved with your photo and are the perfect way of capturing those cherished memories forever.
HOLY LASER’s 3D laser crystal engraving machine creates the ultimate gifts when it comes to etched 3D photo crystals. The laser effect works great on photos of people and a multitude of objects as it enables our designers to produce a unique extrusion that makes it look like the person or object is really inside the crystal. Looking at the crystal from the side gives a detailed view that actually protrudes out creating that perfect 3D effect. 

Applicable Area:
3D Crystal Laser Inner Subsurface Engraving Machine is a high resolution laser engraving machine, is really a fine processing machine with advantages of high fidelity and high stablity, which is definitely suitable for fine model engraving processing centers, gift shops, craft shops, photo printing shops, wedding photography, souvenirs, personalized gifts shops, etc.

Working Processing:

Suitable material :
Our 3D Crystal Laser Inner Subsurface Engraving Machine is suitable for engraving inside of the crystal cube, common glass. transparent acrylic.

Samples:
Our 2D/3D Crystal Laser Inner Subsurface Engraving Machine adopts industrial design, which can engrave 1 big block of crystal or several small blocks at the same time. Its products can give person crystal-clear and fine noble visual image, that’ s elaboration for your home decoration
 

Advantages :
1. CE,FCC, FDA approved,
2.This machine can engraving both 2D nad 3D, (depends on your design).
3. Our machine good for quantity production.
4. With newest laser, high speed 24) is specializing in manufacturing Laser Marking Machine,Glass Laser Engraving Machine, Laser Cutting Machine and etc from 2006, which is a national high-tech enterprise integrating with R&D, manufactuning and Selling. The Company have obtained independent Export and Import Rights, meanwhile, all the products have passed the CE,FCC,SGS,TUV and FDA special for USA market. Warmly welcome you to visit our facotry.

After-sale service:
1.We will train you the technology at our factory for free.
2.Our engineers could serve you 24 hours online.
3.We will send you the video show you how to use the machine step by step.
4.24 months guarantee for whole machine.
5.Machine has been adjusted before delivery.

Contact us:

Warmly welcome you visit our factory! ! !
Warmly welcome you contact us directly for more information! ! !

 

Guide to Drive Shafts and U-Joints

If you’re concerned about the performance of your car’s driveshaft, you’re not alone. Many car owners are unaware of the warning signs of a failed driveshaft, but knowing what to look for can help you avoid costly repairs. Here is a brief guide on drive shafts, U-joints and maintenance intervals. Listed below are key points to consider before replacing a vehicle driveshaft.
air-compressor

Symptoms of Driveshaft Failure

Identifying a faulty driveshaft is easy if you’ve ever heard a strange noise from under your car. These sounds are caused by worn U-joints and bearings supporting the drive shaft. When they fail, the drive shafts stop rotating properly, creating a clanking or squeaking sound. When this happens, you may hear noise from the side of the steering wheel or floor.
In addition to noise, a faulty driveshaft can cause your car to swerve in tight corners. It can also lead to suspended bindings that limit overall control. Therefore, you should have these symptoms checked by a mechanic as soon as you notice them. If you notice any of the symptoms above, your next step should be to tow your vehicle to a mechanic. To avoid extra trouble, make sure you’ve taken precautions by checking your car’s oil level.
In addition to these symptoms, you should also look for any noise from the drive shaft. The first thing to look for is the squeak. This was caused by severe damage to the U-joint attached to the drive shaft. In addition to noise, you should also look for rust on the bearing cap seals. In extreme cases, your car can even shudder when accelerating.
Vibration while driving can be an early warning sign of a driveshaft failure. Vibration can be due to worn bushings, stuck sliding yokes, or even springs or bent yokes. Excessive torque can be caused by a worn center bearing or a damaged U-joint. The vehicle may make unusual noises in the chassis system.
If you notice these signs, it’s time to take your car to a mechanic. You should check regularly, especially heavy vehicles. If you’re not sure what’s causing the noise, check your car’s transmission, engine, and rear differential. If you suspect that a driveshaft needs to be replaced, a certified mechanic can replace the driveshaft in your car.
air-compressor

Drive shaft type

Driveshafts are used in many different types of vehicles. These include four-wheel drive, front-engine rear-wheel drive, motorcycles and boats. Each type of drive shaft has its own purpose. Below is an overview of the 3 most common types of drive shafts:
The driveshaft is a circular, elongated shaft that transmits torque from the engine to the wheels. Drive shafts often contain many joints to compensate for changes in length or angle. Some drive shafts also include connecting shafts and internal constant velocity joints. Some also include torsional dampers, spline joints, and even prismatic joints. The most important thing about the driveshaft is that it plays a vital role in transmitting torque from the engine to the wheels.
The drive shaft needs to be both light and strong to move torque. While steel is the most commonly used material for automotive driveshafts, other materials such as aluminum, composites, and carbon fiber are also commonly used. It all depends on the purpose and size of the vehicle. Precision Manufacturing is a good source for OEM products and OEM driveshafts. So when you’re looking for a new driveshaft, keep these factors in mind when buying.
Cardan joints are another common drive shaft. A universal joint, also known as a U-joint, is a flexible coupling that allows 1 shaft to drive the other at an angle. This type of drive shaft allows power to be transmitted while the angle of the other shaft is constantly changing. While a gimbal is a good option, it’s not a perfect solution for all applications.
CZPT, Inc. has state-of-the-art machinery to service all types of drive shafts, from small cars to race cars. They serve a variety of needs, including racing, industry and agriculture. Whether you need a new drive shaft or a simple adjustment, the staff at CZPT can meet all your needs. You’ll be back on the road soon!

U-joint

If your car yoke or u-joint shows signs of wear, it’s time to replace them. The easiest way to replace them is to follow the steps below. Use a large flathead screwdriver to test. If you feel any movement, the U-joint is faulty. Also, inspect the bearing caps for damage or rust. If you can’t find the u-joint wrench, try checking with a flashlight.
When inspecting U-joints, make sure they are properly lubricated and lubricated. If the joint is dry or poorly lubricated, it can quickly fail and cause your car to squeak while driving. Another sign that a joint is about to fail is a sudden, excessive whine. Check your u-joints every year or so to make sure they are in proper working order.
Whether your u-joint is sealed or lubricated will depend on the make and model of your vehicle. When your vehicle is off-road, you need to install lubricable U-joints for durability and longevity. A new driveshaft or derailleur will cost more than a U-joint. Also, if you don’t have a good understanding of how to replace them, you may need to do some transmission work on your vehicle.
When replacing the U-joint on the drive shaft, be sure to choose an OEM replacement whenever possible. While you can easily repair or replace the original head, if the u-joint is not lubricated, you may need to replace it. A damaged gimbal joint can cause problems with your car’s transmission or other critical components. Replacing your car’s U-joint early can ensure its long-term performance.
Another option is to use 2 CV joints on the drive shaft. Using multiple CV joints on the drive shaft helps you in situations where alignment is difficult or operating angles do not match. This type of driveshaft joint is more expensive and complex than a U-joint. The disadvantages of using multiple CV joints are additional length, weight, and reduced operating angle. There are many reasons to use a U-joint on a drive shaft.
air-compressor

maintenance interval

Checking U-joints and slip joints is a critical part of routine maintenance. Most vehicles are equipped with lube fittings on the driveshaft slip joint, which should be checked and lubricated at every oil change. CZPT technicians are well-versed in axles and can easily identify a bad U-joint based on the sound of acceleration or shifting. If not repaired properly, the drive shaft can fall off, requiring expensive repairs.
Oil filters and oil changes are other parts of a vehicle’s mechanical system. To prevent rust, the oil in these parts must be replaced. The same goes for transmission. Your vehicle’s driveshaft should be inspected at least every 60,000 miles. The vehicle’s transmission and clutch should also be checked for wear. Other components that should be checked include PCV valves, oil lines and connections, spark plugs, tire bearings, steering gearboxes and brakes.
If your vehicle has a manual transmission, it is best to have it serviced by CZPT’s East Lexington experts. These services should be performed every 2 to 4 years or every 24,000 miles. For best results, refer to the owner’s manual for recommended maintenance intervals. CZPT technicians are experienced in axles and differentials. Regular maintenance of your drivetrain will keep it in good working order.

China Custom 2D 3D Crystal Glass Photo Laser Engraving Machine for Gift     with Good qualityChina Custom 2D 3D Crystal Glass Photo Laser Engraving Machine for Gift     with Good quality